pt::peg::to::param(n) | Parser Tools | pt::peg::to::param(n) |
pt::peg::to::param - PEG Conversion. Write PARAM format
package require Tcl 8.5
package require pt::peg::to::param ?1?
package require pt::peg
package require pt::pe
pt::peg::to::param reset
pt::peg::to::param configure
pt::peg::to::param configure option
pt::peg::to::param configure option value...
pt::peg::to::param convert serial
Are you lost ? Do you have trouble understanding this document ? In that case please read the overview provided by the Introduction to Parser Tools. This document is the entrypoint to the whole system the current package is a part of.
This package implements the converter from parsing expression grammars to PARAM markup.
It resides in the Export section of the Core Layer of Parser Tools, and can be used either directly with the other packages of this layer, or indirectly through the export manager provided by pt::peg::export. The latter is intented for use in untrusted environments and done through the corresponding export plugin pt::peg::export::param sitting between converter and export manager.
IMAGE: arch_core_eplugins
The API provided by this package satisfies the specification of the Converter API found in the Parser Tools Export API specification.
The converter to PARAM markup recognizes the following configuration variables and changes its behaviour as they specify.
The PARAM code representation of parsing expression grammars is assembler-like text using the instructions of the virtual machine documented in the PackRat Machine Specification, plus a few more for control flow (jump ok, jump fail, call symbol, return).
It is not really useful, except possibly as a tool demonstrating how a grammar is compiled in general, without getting distracted by the incidentials of a framework, i.e. like the supporting C and Tcl code generated by the other PARAM-derived formats.
It has no direct formal specification beyond what was said above.
Assuming the following PEG for simple mathematical expressions
PEG calculator (Expression)
Digit <- '0'/'1'/'2'/'3'/'4'/'5'/'6'/'7'/'8'/'9' ;
Sign <- '-' / '+' ;
Number <- Sign? Digit+ ;
Expression <- '(' Expression ')' / (Factor (MulOp Factor)*) ;
MulOp <- '*' / '/' ;
Factor <- Term (AddOp Term)* ;
AddOp <- '+'/'-' ;
Term <- Number ; END;
one possible PARAM serialization for it is
# -*- text -*- # Parsing Expression Grammar 'TEMPLATE'. # Generated for unknown, from file 'TEST' # # Grammar Start Expression # <<MAIN>>:
call sym_Expression
halt # # value Symbol 'AddOp' # sym_AddOp: # / # '-' # '+'
symbol_restore AddOp
found! jump found_7
loc_push
call choice_5
fail! value_clear
ok! value_leaf AddOp
symbol_save AddOp
error_nonterminal AddOp
loc_pop_discard found_7:
ok! ast_value_push
return choice_5: # / # '-' # '+'
error_clear
loc_push
error_push
input_next "t -"
ok! test_char "-"
error_pop_merge
ok! jump oknoast_4
loc_pop_rewind
loc_push
error_push
input_next "t +"
ok! test_char "+"
error_pop_merge
ok! jump oknoast_4
loc_pop_rewind
status_fail
return oknoast_4:
loc_pop_discard
return # # value Symbol 'Digit' # sym_Digit: # / # '0' # '1' # '2' # '3' # '4' # '5' # '6' # '7' # '8' # '9'
symbol_restore Digit
found! jump found_22
loc_push
call choice_20
fail! value_clear
ok! value_leaf Digit
symbol_save Digit
error_nonterminal Digit
loc_pop_discard found_22:
ok! ast_value_push
return choice_20: # / # '0' # '1' # '2' # '3' # '4' # '5' # '6' # '7' # '8' # '9'
error_clear
loc_push
error_push
input_next "t 0"
ok! test_char "0"
error_pop_merge
ok! jump oknoast_19
loc_pop_rewind
loc_push
error_push
input_next "t 1"
ok! test_char "1"
error_pop_merge
ok! jump oknoast_19
loc_pop_rewind
loc_push
error_push
input_next "t 2"
ok! test_char "2"
error_pop_merge
ok! jump oknoast_19
loc_pop_rewind
loc_push
error_push
input_next "t 3"
ok! test_char "3"
error_pop_merge
ok! jump oknoast_19
loc_pop_rewind
loc_push
error_push
input_next "t 4"
ok! test_char "4"
error_pop_merge
ok! jump oknoast_19
loc_pop_rewind
loc_push
error_push
input_next "t 5"
ok! test_char "5"
error_pop_merge
ok! jump oknoast_19
loc_pop_rewind
loc_push
error_push
input_next "t 6"
ok! test_char "6"
error_pop_merge
ok! jump oknoast_19
loc_pop_rewind
loc_push
error_push
input_next "t 7"
ok! test_char "7"
error_pop_merge
ok! jump oknoast_19
loc_pop_rewind
loc_push
error_push
input_next "t 8"
ok! test_char "8"
error_pop_merge
ok! jump oknoast_19
loc_pop_rewind
loc_push
error_push
input_next "t 9"
ok! test_char "9"
error_pop_merge
ok! jump oknoast_19
loc_pop_rewind
status_fail
return oknoast_19:
loc_pop_discard
return # # value Symbol 'Expression' # sym_Expression: # / # x # '\(' # (Expression) # '\)' # x # (Factor) # * # x # (MulOp) # (Factor)
symbol_restore Expression
found! jump found_46
loc_push
ast_push
call choice_44
fail! value_clear
ok! value_reduce Expression
symbol_save Expression
error_nonterminal Expression
ast_pop_rewind
loc_pop_discard found_46:
ok! ast_value_push
return choice_44: # / # x # '\(' # (Expression) # '\)' # x # (Factor) # * # x # (MulOp) # (Factor)
error_clear
ast_push
loc_push
error_push
call sequence_27
error_pop_merge
ok! jump ok_43
ast_pop_rewind
loc_pop_rewind
ast_push
loc_push
error_push
call sequence_40
error_pop_merge
ok! jump ok_43
ast_pop_rewind
loc_pop_rewind
status_fail
return ok_43:
ast_pop_discard
loc_pop_discard
return sequence_27: # x # '\(' # (Expression) # '\)'
loc_push
error_clear
error_push
input_next "t ("
ok! test_char "("
error_pop_merge
fail! jump failednoast_29
ast_push
error_push
call sym_Expression
error_pop_merge
fail! jump failed_28
error_push
input_next "t )"
ok! test_char ")"
error_pop_merge
fail! jump failed_28
ast_pop_discard
loc_pop_discard
return failed_28:
ast_pop_rewind failednoast_29:
loc_pop_rewind
return sequence_40: # x # (Factor) # * # x # (MulOp) # (Factor)
ast_push
loc_push
error_clear
error_push
call sym_Factor
error_pop_merge
fail! jump failed_41
error_push
call kleene_37
error_pop_merge
fail! jump failed_41
ast_pop_discard
loc_pop_discard
return failed_41:
ast_pop_rewind
loc_pop_rewind
return kleene_37: # * # x # (MulOp) # (Factor)
loc_push
error_push
call sequence_34
error_pop_merge
fail! jump failed_38
loc_pop_discard
jump kleene_37 failed_38:
loc_pop_rewind
status_ok
return sequence_34: # x # (MulOp) # (Factor)
ast_push
loc_push
error_clear
error_push
call sym_MulOp
error_pop_merge
fail! jump failed_35
error_push
call sym_Factor
error_pop_merge
fail! jump failed_35
ast_pop_discard
loc_pop_discard
return failed_35:
ast_pop_rewind
loc_pop_rewind
return # # value Symbol 'Factor' # sym_Factor: # x # (Term) # * # x # (AddOp) # (Term)
symbol_restore Factor
found! jump found_60
loc_push
ast_push
call sequence_57
fail! value_clear
ok! value_reduce Factor
symbol_save Factor
error_nonterminal Factor
ast_pop_rewind
loc_pop_discard found_60:
ok! ast_value_push
return sequence_57: # x # (Term) # * # x # (AddOp) # (Term)
ast_push
loc_push
error_clear
error_push
call sym_Term
error_pop_merge
fail! jump failed_58
error_push
call kleene_54
error_pop_merge
fail! jump failed_58
ast_pop_discard
loc_pop_discard
return failed_58:
ast_pop_rewind
loc_pop_rewind
return kleene_54: # * # x # (AddOp) # (Term)
loc_push
error_push
call sequence_51
error_pop_merge
fail! jump failed_55
loc_pop_discard
jump kleene_54 failed_55:
loc_pop_rewind
status_ok
return sequence_51: # x # (AddOp) # (Term)
ast_push
loc_push
error_clear
error_push
call sym_AddOp
error_pop_merge
fail! jump failed_52
error_push
call sym_Term
error_pop_merge
fail! jump failed_52
ast_pop_discard
loc_pop_discard
return failed_52:
ast_pop_rewind
loc_pop_rewind
return # # value Symbol 'MulOp' # sym_MulOp: # / # '*' # '/'
symbol_restore MulOp
found! jump found_67
loc_push
call choice_65
fail! value_clear
ok! value_leaf MulOp
symbol_save MulOp
error_nonterminal MulOp
loc_pop_discard found_67:
ok! ast_value_push
return choice_65: # / # '*' # '/'
error_clear
loc_push
error_push
input_next "t *"
ok! test_char "*"
error_pop_merge
ok! jump oknoast_64
loc_pop_rewind
loc_push
error_push
input_next "t /"
ok! test_char "/"
error_pop_merge
ok! jump oknoast_64
loc_pop_rewind
status_fail
return oknoast_64:
loc_pop_discard
return # # value Symbol 'Number' # sym_Number: # x # ? # (Sign) # + # (Digit)
symbol_restore Number
found! jump found_80
loc_push
ast_push
call sequence_77
fail! value_clear
ok! value_reduce Number
symbol_save Number
error_nonterminal Number
ast_pop_rewind
loc_pop_discard found_80:
ok! ast_value_push
return sequence_77: # x # ? # (Sign) # + # (Digit)
ast_push
loc_push
error_clear
error_push
call optional_70
error_pop_merge
fail! jump failed_78
error_push
call poskleene_73
error_pop_merge
fail! jump failed_78
ast_pop_discard
loc_pop_discard
return failed_78:
ast_pop_rewind
loc_pop_rewind
return optional_70: # ? # (Sign)
loc_push
error_push
call sym_Sign
error_pop_merge
fail! loc_pop_rewind
ok! loc_pop_discard
status_ok
return poskleene_73: # + # (Digit)
loc_push
call sym_Digit
fail! jump failed_74 loop_75:
loc_pop_discard
loc_push
error_push
call sym_Digit
error_pop_merge
ok! jump loop_75
status_ok failed_74:
loc_pop_rewind
return # # value Symbol 'Sign' # sym_Sign: # / # '-' # '+'
symbol_restore Sign
found! jump found_86
loc_push
call choice_5
fail! value_clear
ok! value_leaf Sign
symbol_save Sign
error_nonterminal Sign
loc_pop_discard found_86:
ok! ast_value_push
return # # value Symbol 'Term' # sym_Term: # (Number)
symbol_restore Term
found! jump found_89
loc_push
ast_push
call sym_Number
fail! value_clear
ok! value_reduce Term
symbol_save Term
error_nonterminal Term
ast_pop_rewind
loc_pop_discard found_89:
ok! ast_value_push
return # #
Here we specify the format used by the Parser Tools to serialize Parsing Expression Grammars as immutable values for transport, comparison, etc.
We distinguish between regular and canonical serializations. While a PEG may have more than one regular serialization only exactly one of them will be canonical.
Assuming the following PEG for simple mathematical expressions
PEG calculator (Expression)
Digit <- '0'/'1'/'2'/'3'/'4'/'5'/'6'/'7'/'8'/'9' ;
Sign <- '-' / '+' ;
Number <- Sign? Digit+ ;
Expression <- '(' Expression ')' / (Factor (MulOp Factor)*) ;
MulOp <- '*' / '/' ;
Factor <- Term (AddOp Term)* ;
AddOp <- '+'/'-' ;
Term <- Number ; END;
then its canonical serialization (except for whitespace) is
pt::grammar::peg {
rules { AddOp {is {/ {t -} {t +}} mode value} Digit {is {/ {t 0} {t 1} {t 2} {t 3} {t 4} {t 5} {t 6} {t 7} {t 8} {t 9}} mode value} Expression {is {/ {x {t (} {n Expression} {t )}} {x {n Factor} {* {x {n MulOp} {n Factor}}}}} mode value} Factor {is {x {n Term} {* {x {n AddOp} {n Term}}}} mode value} MulOp {is {/ {t *} {t /}} mode value} Number {is {x {? {n Sign}} {+ {n Digit}}} mode value} Sign {is {/ {t -} {t +}} mode value} Term {is {n Number} mode value}
}
start {n Expression} }
Here we specify the format used by the Parser Tools to serialize Parsing Expressions as immutable values for transport, comparison, etc.
We distinguish between regular and canonical serializations. While a parsing expression may have more than one regular serialization only exactly one of them will be canonical.
Assuming the parsing expression shown on the right-hand side of the rule
Expression <- '(' Expression ')'
/ Factor (MulOp Factor)*
then its canonical serialization (except for whitespace) is
{/ {x {t (} {n Expression} {t )}} {x {n Factor} {* {x {n MulOp} {n Factor}}}}}
This document, and the package it describes, will undoubtedly contain bugs and other problems. Please report such in the category pt of the Tcllib SF Trackers [http://sourceforge.net/tracker/?group_id=12883]. Please also report any ideas for enhancements you may have for either package and/or documentation.
EBNF, LL(k), PARAM, PEG, TDPL, context-free languages, conversion, expression, format conversion, grammar, matching, parser, parsing expression, parsing expression grammar, push down automaton, recursive descent, serialization, state, top-down parsing languages, transducer
Parsing and Grammars
Copyright (c) 2009 Andreas Kupries <andreas_kupries@users.sourceforge.net>
1 | pt |