simulation::montecarlo(n) Tcl Simulation Tools simulation::montecarlo(n)


simulation::montecarlo - Monte Carlo simulations

package require Tcl ?8.4?

package require simulation::montecarlo 0.1

package require simulation::random

package require math::statistics

::simulation::montecarlo::getOption keyword

::simulation::montecarlo::hasOption keyword

::simulation::montecarlo::setOption keyword value

::simulation::montecarlo::setTrialResult values

::simulation::montecarlo::setExpResult values

::simulation::montecarlo::getTrialResults

::simulation::montecarlo::getExpResult

::simulation::montecarlo::transposeData values

::simulation::montecarlo::integral2D ...

::simulation::montecarlo::singleExperiment args


The technique of Monte Carlo simulations is basically simple:

You can think of a model of a network of computers, an ecosystem of some kind or in fact anything that can be quantitatively described and has some stochastic element in it.

The package simulation::montecarlo offers a basic framework for such a modelling technique:

#
# MC experiments:
# Determine the mean and median of a set of points and compare them
#
::simulation::montecarlo::singleExperiment -init {

package require math::statistics
set prng [::simulation::random::prng_Normal 0.0 1.0] } -loop {
set numbers {}
for { set i 0 } { $i < [getOption samples] } { incr i } {
lappend numbers [$prng]
}
set mean [::math::statistics::mean $numbers]
set median [::math::statistics::median $numbers] ;# ? Exists?
setTrialResult [list $mean $median] } -final {
set result [getTrialResults]
set means {}
set medians {}
foreach r $result {
foreach {m M} $r break
lappend means $m
lappend medians $M
}
puts [getOption reportfile] "Correlation: [::math::statistics::corr $means $medians]" } -trials 100 -samples 10 -verbose 1 -columns {Mean Median}
This example attemps to find out how well the median value and the mean value of a random set of numbers correlate. Sometimes a median value is a more robust characteristic than a mean value - especially if you have a statistical distribution with "fat" tails.

The package defines the following auxiliary procedures:

::simulation::montecarlo::getOption keyword
Get the value of an option given as part of the singeExperiment command.
Given keyword (without leading minus)

::simulation::montecarlo::hasOption keyword
Returns 1 if the option is available, 0 if not.
Given keyword (without leading minus)

::simulation::montecarlo::setOption keyword value
Set the value of the given option.
Given keyword (without leading minus)
(New) value for the option

::simulation::montecarlo::setTrialResult values
Store the results of the trial for later analysis
List of values to be stored

::simulation::montecarlo::setExpResult values
Set the results of the entire experiment (typically used in the final phase).
List of values to be stored

::simulation::montecarlo::getTrialResults
Get the results of all individual trials for analysis (typically used in the final phase or after completion of the command).

::simulation::montecarlo::getExpResult
Get the results of the entire experiment (typically used in the final phase or even after completion of the singleExperiment command).

::simulation::montecarlo::transposeData values
Interchange columns and rows of a list of lists and return the result.
List of lists of values

There are two main procedures: integral2D and singleExperiment.

::simulation::montecarlo::integral2D ...
Integrate a function over a two-dimensional region using a Monte Carlo approach.

Arguments PM

::simulation::montecarlo::singleExperiment args
Iterate code over a number of trials and store the results. The iteration is gouverned by parameters given via a list of keyword-value pairs.
List of keyword-value pairs, all of which are available during the execution via the getOption command.

The singleExperiment command predefines the following options:

Any other options can be used via the getOption procedure in the body.

The procedure singleExperiment works by constructing a temporary procedure that does the actual work. It loops for the given number of trials.

As it constructs a temporary procedure, local variables defined at the start continue to exist in the loop.

math, montecarlo simulation, stochastic modelling

Mathematics

Copyright (c) 2008 Arjen Markus <arjenmarkus@users.sourceforge.net>
0.1 simulation