- (void) encodeToCommandBuffer: (__nonnull id<
MTLCommandBuffer >) commandBuffer(MPSCNNBatchNormalizationState
*__nonnull)
batchNormalizationGradientState(MPSCNNBatchNormalizationState
*__nonnull) batchNormalizationSourceState(nullable NSArray<
MPSVector * > *) inputSumOfSquaresVectors(nonnull
MPSCNNNormalizationGammaAndBetaState *) resultState
Encode an MPSNNOptimizerRMSProp object to a command buffer
to perform out of place update
Parameters:
commandBuffer A valid MTLCommandBuffer to
receive the encoded kernel.
batchNormalizationGradientState A valid
MPSCNNBatchNormalizationState object which specifies the input state
with gradients for this update.
batchNormalizationSourceState A valid
MPSCNNBatchNormalizationState object which specifies the input state
with original gamma/beta for this update.
inputSumOfSquaresVectors An array MPSVector object which specifies
the gradient sumOfSquares vectors which will be updated and overwritten. The
index 0 corresponds to gamma, index 1 corresponds to beta, array can be of
size 1 in which case beta won't be updated
resultState A valid MPSCNNNormalizationGammaAndBetaState
object which specifies the resultValues state which will be updated and
overwritten.
The following operations would be applied
s[t] = decay * s[t-1] + (1 - decay) * (g ^ 2)
variable = variable - learningRate * g / (sqrt(s[t]) + epsilon)
where,
g is gradient of error wrt variable
s[t] is weighted sum of squares of gradients.fi
- (void) encodeToCommandBuffer: (__nonnull id<
MTLCommandBuffer >) commandBuffer(MPSCNNBatchNormalizationState
*__nonnull) batchNormalizationState(nullable NSArray< MPSVector *
> *) inputSumOfSquaresVectors(nonnull
MPSCNNNormalizationGammaAndBetaState *) resultState
Encode an MPSNNOptimizerRMSProp object to a command buffer
to perform out of place update
Parameters:
commandBuffer A valid MTLCommandBuffer to
receive the encoded kernel.
batchNormalizationState A valid
MPSCNNBatchNormalizationState object which specifies the input state
with gradients and original gamma/beta for this update.
inputSumOfSquaresVectors An array MPSVector object which specifies
the gradient sumOfSquares vectors which will be updated and overwritten. The
index 0 corresponds to gamma, index 1 corresponds to beta, array can be of
size 1 in which case beta won't be updated
resultState A valid MPSCNNNormalizationGammaAndBetaState
object which specifies the resultValues state which will be updated and
overwritten.
The following operations would be applied
s[t] = decay * s[t-1] + (1 - decay) * (g ^ 2)
variable = variable - learningRate * g / (sqrt(s[t]) + epsilon)
where,
g is gradient of error wrt variable
s[t] is weighted sum of squares of gradients.fi
- (void) encodeToCommandBuffer: (__nonnull id<
MTLCommandBuffer >) commandBuffer(MPSCNNConvolutionGradientState
*__nonnull)
convolutionGradientState(MPSCNNConvolutionWeightsAndBiasesState
*__nonnull) convolutionSourceState(nullable NSArray< MPSVector *
> *) inputSumOfSquaresVectors(nonnull
MPSCNNConvolutionWeightsAndBiasesState *) resultState
Encode an MPSNNOptimizerRMSProp object to a command buffer
to perform out of place update
Parameters:
commandBuffer A valid MTLCommandBuffer to
receive the encoded kernel.
convolutionGradientState A valid
MPSCNNConvolutionGradientState object which specifies the input state
with gradients for this update.
convolutionSourceState A valid
MPSCNNConvolutionWeightsAndBiasesState object which specifies the input
state with values to be updated.
inputSumOfSquaresVectors An array MPSVector object which specifies
the gradient sumOfSquares vectors which will be updated and overwritten. The
index 0 corresponds to weights, index 1 corresponds to biases, array can be of
size 1 in which case biases won't be updated
resultState A valid MPSCNNConvolutionWeightsAndBiasesState
object which specifies the resultValues state which will be updated and
overwritten.
The following operations would be applied
s[t] = decay * s[t-1] + (1 - decay) * (g ^ 2)
variable = variable - learningRate * g / (sqrt(s[t]) + epsilon)
where,
g is gradient of error wrt variable
s[t] is weighted sum of squares of gradients.fi
- (void) encodeToCommandBuffer: (nonnull id< MTLCommandBuffer
>) commandBuffer(nonnull MPSVector *) inputGradientVector(nonnull
MPSVector *) inputValuesVector(nonnull MPSVector *)
inputSumOfSquaresVector(nonnull MPSVector *) resultValuesVector
Encode an MPSNNOptimizerRMSProp object to a command buffer
to perform out of place update
Parameters:
commandBuffer A valid MTLCommandBuffer to
receive the encoded kernel.
inputGradientVector A valid MPSVector object which
specifies the input vector of gradients for this update.
inputValuesVector A valid MPSVector object which specifies
the input vector of values to be updated.
inputSumOfSquaresVector A valid MPSVector object which
specifies the gradient velocity vector which will be updated and overwritten.
resultValuesVector A valid MPSVector object which specifies
the resultValues vector which will be updated and overwritten.
The following operations would be applied
s[t] = decay * s[t-1] + (1 - decay) * (g ^ 2)
variable = variable - learningRate * g / (sqrt(s[t]) + epsilon)
where,
g is gradient of error wrt variable
s[t] is weighted sum of squares of gradients.fi
- (nonnull instancetype) initWithDevice: (nonnull id<
MTLDevice >) device
Standard init with default properties per filter type
Parameters:
device The device that the filter will be used on.
May not be NULL.
Returns:
a pointer to the newly initialized object. This will
fail, returning nil if the device is not supported. Devices must be
MTLFeatureSet_iOS_GPUFamily2_v1 or later.
Reimplemented from MPSNNOptimizer.
- (nonnull instancetype) initWithDevice: (nonnull id<
MTLDevice >) device(double) decay(float) epsilon(nonnull
MPSNNOptimizerDescriptor *) optimizerDescriptor
Full initialization for the rmsProp update
Parameters:
device The device on which the kernel will
execute.
decay The decay to update sumOfSquares
epsilon The epsilon which will be applied
optimizerDescriptor The optimizerDescriptor which will have a bunch of
properties to be applied
Returns:
A valid MPSNNOptimizerRMSProp object or
nil, if failure.
- (nonnull instancetype) initWithDevice: (nonnull id<
MTLDevice >) device(float) learningRate
Convenience initialization for the RMSProp update
Parameters:
device The device on which the kernel will
execute.
learningRate The learningRate which will be applied
Returns:
A valid MPSNNOptimizerRMSProp object or
nil, if failure.