MPSMatrixBatchNormalizationGradient(3) MetalPerformanceShaders.framework MPSMatrixBatchNormalizationGradient(3)

MPSMatrixBatchNormalizationGradient

#import <MPSMatrixBatchNormalization.h>

Inherits MPSMatrixBinaryKernel.


(void) - setNeuronType:parameterA:parameterB:parameterC:
(MPSCNNNeuronType) - neuronType
(float) - neuronParameterA
(float) - neuronParameterB
(float) - neuronParameterC
(nonnull instancetype) - initWithDevice:
(void) - encodeToCommandBuffer:gradientMatrix:inputMatrix:meanVector:varianceVector:gammaVector:betaVector:resultGradientForDataMatrix:resultGradientForGammaVector:resultGradientForBetaVector:
(nullable instancetype) - initWithCoder:device:
(nonnull instancetype) - copyWithZone:device:


NSUInteger sourceNumberOfFeatureVectors
NSUInteger sourceInputFeatureChannels
float epsilon

This depends on Metal.framework.

A kernel to compute the gradient of the batch normalization operation.

A MPSMatrixBatchNormalizationGradient object computes the results of backpropagating the gradients of a loss function with respect to the outputs of an MPSMatrixBatchNormalization object. The corresponding properties and data used by the MPSMatrixBatchNormalizationGradient object should correspond to those used by the forward MPSMatrixBatchNormalization object for which the gradient is being computed.

- (nonnull instancetype) copyWithZone: (nullable NSZone *) zone(nullable id< MTLDevice >) device

Make a copy of this kernel for a new device -

See also:

MPSKernel

Parameters:

zone The NSZone in which to allocate the object
device The device for the new MPSKernel. If nil, then use self.device.

Returns:

A pointer to a copy of this MPSKernel. This will fail, returning nil if the device is not supported. Devices must be MTLFeatureSet_iOS_GPUFamily2_v1 or later.

Reimplemented from MPSKernel.

- (void) encodeToCommandBuffer: (nonnull id< MTLCommandBuffer >) commandBuffer(MPSMatrix *__nonnull) gradientMatrix(MPSMatrix *__nonnull) inputMatrix(MPSVector *__nonnull) meanVector(MPSVector *__nonnull) varianceVector(MPSVector *__nullable) gammaVector(MPSVector *__nullable) betaVector(MPSMatrix *__nonnull) resultGradientForDataMatrix(MPSVector *__nullable) resultGradientForGammaVector(MPSVector *__nullable) resultGradientForBetaVector

Encode a MPSMatrixBatchNormalizationGradient object to a command buffer and compute its gradient with respect to its input data.

Parameters:

commandBuffer The commandBuffer on which to encode the operation.
gradientMatrix A matrix whose values represent the gradient of a loss function with respect to the results of a forward MPSMatrixBatchNormalization operation.
inputMatrix A matrix containing the inputs to a forward MPSMatrixBatchNormalization operation for which the gradient values are to be computed.
meanVector A vector containing the batch mean values. Should contain either the specified values used to compute the forward result, or the computed values resulting from the forward kernel execution.
varianceVector A vector containing the batch variance values. Should contain either the specified values used to compute the forward result, or the computed values resulting from the forward kernel execution.
gammaVector A vector containing the gamma terms. Should be the same values as used when computing the forward result.
betaVector A vector containing the beta terms. Should be the same values as used when computing the forward result.
resultGradientForDataMatrix The matrix containing the resulting gradient values.
resultGradientForGammaVector If non-NULL the vector containing gradients for the gamma terms.
resultGradientForBetaVector If non-NULL the vector containing gradients for the beta terms.

- (nullable instancetype) initWithCoder: (NSCoder *__nonnull) aDecoder(nonnull id< MTLDevice >) device

NSSecureCoding compatability See MPSKernel::initWithCoder.

Parameters:

aDecoder The NSCoder subclass with your serialized MPSMatrixBatchNormalizationGradient
device The MTLDevice on which to make the MPSMatrixBatchNormalizationGradient object.

Returns:

A new MPSMatrixBatchNormalizationGradient object, or nil if failure.

Reimplemented from MPSKernel.

- (nonnull instancetype) initWithDevice: (nonnull id< MTLDevice >) device

Standard init with default properties per filter type

Parameters:

device The device that the filter will be used on. May not be NULL.

Returns:

a pointer to the newly initialized object. This will fail, returning nil if the device is not supported. Devices must be MTLFeatureSet_iOS_GPUFamily2_v1 or later.

Reimplemented from MPSKernel.

- (float) neuronParameterA

Getter funtion for neuronType set using setNeuronType:parameterA:parameterB:parameterC method

- (float) neuronParameterB

Getter funtion for neuronType set using setNeuronType:parameterA:parameterB:parameterC method

- (float) neuronParameterC

Getter funtion for neuronType set using setNeuronType:parameterA:parameterB:parameterC method

- (MPSCNNNeuronType) neuronType

Getter funtion for neuronType set using setNeuronType:parameterA:parameterB:parameterC method

- (void) setNeuronType: (MPSCNNNeuronType) neuronType(float) parameterA(float) parameterB(float) parameterC

Specifies a neuron activation function to be used.

This method can be used to add a neuron activation funtion of given type with associated scalar parameters A, B, and C that are shared across all output values. Note that this method can only be used to specify neurons which are specified by three (or fewer) parameters shared across all output values (or channels, in CNN nomenclature). It is an error to call this method for neuron activation functions like MPSCNNNeuronTypePReLU, which require per-channel parameter values. An MPSMatrixBatchNormalizationGradient kernel is initialized with a default neuron function of MPSCNNNeuronTypeNone.

Parameters:

neuronType Type of neuron activation function. For full list see MPSCNNNeuronType.h
parameterA parameterA of neuron activation that is shared across all output values.
parameterB parameterB of neuron activation that is shared across all output values.
parameterC parameterC of neuron activation that is shared across all output values.

- epsilon [read], [write], [nonatomic], [assign]

A small term added to the variance when normalizing the input.

- sourceInputFeatureChannels [read], [write], [nonatomic], [assign]

The number of feature channels in the input vectors.

- sourceNumberOfFeatureVectors [read], [write], [nonatomic], [assign]

The number of input vectors which make up the input array.

Generated automatically by Doxygen for MetalPerformanceShaders.framework from the source code.

Mon Jul 9 2018 Version MetalPerformanceShaders-119.3